Exam on molecular biology:

- I Tests
 - 40 CS tests
 - 60 CM tests
- II Practical part
 - 1. Definitions
 - 2. Molecular organization
 - 3. Principles / Steps
 - 4. Gene expression
 - 5. Biological role
 - 6. Legend
 - 7. Practical importance
 - 8. Exercise / genetic code
 - 9. Exercise / restriction fragments / electrophoresis
 - 10. Classification / comparative analysis (several criteria)

The final mark:

50% - average of concluding tests

20% - mark on test

30% - mark on practical part

Repeat all studied topics (reading material, presentations, exercise book);

+ Guides for concluding tests I, II;

+ Questions for final examination from Exercise book

1. Macromolecules:

,	Structure
DNA	Properties
RNA ≻	Types
Proteins	Functions
<u> </u>	Location
	No in human cells

2. Make a comparative analysis of dynamics of chromosomes in different steps of mitosis and meiosis

		Nr of	Nr of DNA	Nr of chromatids	Chromosomal
		chromosomes	molecules		formula
cle	G1				
	S				
	G2				
l cy	Prophase				
Cel	Metaphase				
	Anaphase				
	Telophase				
	Prophase I				
	Metaphase I				
s	Anaphase I				
meiosi	Telophase I				
	Prophase II				
	Metaphase II				
	Anaphase II				
	Telophase II				

3. Make a comparative analysis of main events during mitosis and meiosis:

		Characteristic genetic	Cell and molecular	Biologic role
		processes	events	
	GI			
	S			
/cle	G2			
l cy	Prophase			
Cel	Metaphase			
•	Anaphase			
	Telophase			
	Prophase I			
	Metaphase I			
S	Anaphase I			
Meiosi	Telophase I			
	Prophase II			
	Metaphase II			
	Anaphase II			
	Telophase II			

4. Characterize molecular components of main cellular structures; mention arguments of their presence:

	Molecular organization	Biological role, functions
	(arguments)	
Plasma membrane		
sER		
rER		
GA		
Mitochondria		
Lysosome		
Peroxisome		
Centriole		
Ribosome		
Chromosome		
Chromatin (eu- and hetero-)		
Replisome		
Mitotic spindle		
Structural gene		
Bivalent		

5. Make a characteristic of main genetic events:

Replication DNA repair Transcription Translation Splicing Intra-chromosomal recombination Inter-chromosomal recombination Apoptosis

Definition Principles Steps Apparatus Biological importance

Molecular biology. Guide for preparation for final examination

6. Name and characterize the following processes:

Steps of phagocytosis Steps of ribosome's biogenesis Steps of peroxisome's biogenesis Steps of lysosome's biogenesis Steps of gene expression (I, II and III class)

Short characterization of each process

7. Make a short characteristic and show applications for following methods:

	Short characteristic	Applications
PCR		
in vivo cloning		
Electrophoreses		
Restriction of DNA		
RFLPs		
Isolation of genomic DNA		
Synthesis of cDNA		
Isolation of mRNA		

!!! Algorithm of answer:a) definition and aim of method

b) target of method

c) applications

8. Fill in the table; use additional examples:

		Stong of	At		
Gene Class ex	expression	Molecular level	Cellular level	Organism level	
rRNA 28S					
Tubulin					
Histone 2A					
Ser-tRNA					
Helicase					
Lysosomal nuclease					
rRNA 5S					
Catalase					
TFIID					
Actin					
DNA polymerase					
RNA-polymerase I					
Spectrine					
Cl ⁻ -ATPase					
Met-ARNt					
TFIID					
Ciclin A					
Acid lipase					
Histone 3					

9. Examples of exercises:

- A fragment of coding strand of DNA is given;
- 5 ... CAGATTGAGCGCGCTGGTCGCATAGCTAAATG....3
 - Show the template strand;
 - Make mRNA;
 - Decode mRNA and show the polypeptide;
 - Name components responsible for transcription and translation;
 - Show the tRNA molecules and their anticodons;
 - Name properties of genetic code.

- A mRNA molecule is given:

GpppCAAUUAUGAAACACUGACCAAGCGUCUCUAAAAAA...

- Translate mRNA;
- Show the final product of translation;
- Show the tRNA molecules and their anticodons;
- Name properties of genetic code.

- The following polypeptide is given:

- ...His-Ser-Leu-Val-Arg
 - Show the mRNA used as template;
 - Show the sequence of DNA;
 - Show possible tRNA molecules involved in translation of given polypeptide;
 - Name properties of genetic code.

- A mRNA molecule is given:

GpppACAAGAAUAUGCAAACACUGACCUAAGCGUCUCUAAAAAA...

- Translate mRNA;
- Show the final product of translation;
- Show the tRNA molecules and their anticodons;
- Name properties of genetic code.

- The following polypeptide is given:

... Leu- Ile-His-Tre- Ala-Pro...

- Show the mRNA used as template;
- Show the sequence of DNA;
- Show possible tRNA molecules involved in translation of given polypeptide;
- Name properties of genetic code.

10. Identify the number and length of restriction fragments produced by enzyme HpaI. Choose the correct scheme of electrophoresis of obtained fragments (m – length marcher).

a) restriction site:	GTTAAC
	CAATTG

b) DNA sequence:

5'-AACATACGATCGTTAACCTTTACCCAGGGATACAGGGAAATAGGTTAACTTT-3' 3'-TTGTATGCTAGCAATTGGAAATGGGTCCCTATGT CCC TTTATCCAATTGAAA-5' c) Electrophoresis of different sets of DNA fragments (choose the correct variant).

11. Fill in the table:

	Total No of genes	Permanently active genes	Genes, active depending on conditions	Non-active genes
Human organism				
Nervous cells				
Epithelial cells in intestine				
Epithelial cells in lungs				
Skeletal muscle cells				
Heart cells				
Hepatic cells				
Renal cells				

12. Classifications - several criteria + examples: Macromolecules Nucleic acids Proteins Organelles Genes Methods of gene analysis Etc.

13. Comparative characteristic: DNA vs. RNA Structure 1st class genes vs. 2nd class genes vs. 3rd class genes Expression of 1st class genes vs. 2nd class genes vs. 3rd class genes Replication vs. transcription Transcription vs. translation Different synthetases Reparation vs. replication Constitutive splicing vs. alternative splicing in vivo cloning vs. in vitro cloning Mitosis vs. meiosis Period G1 vs. S vs. G2 Prophase vs. Telophase Anaphase I vs. Anaphase II Prophase of mitosis vs. Prophase I of meiosis Intra-chromosomal recombination vs. Inter-chromosomal recombination Etc.

14. Analyze pictures from reading material. Name pictures and fill in the legends.