Mendelian pedigree patterns

- Autosomal dominant
- Autosomal recessive
- X-linked dominant
- X-linked recessive
- Y-linked

Autosomal-dominant inheritance

Examples of AD inheritance

Autosomal-recessive inheritance

Gaucher disease

Multiple mutations in gene (chrs 1) which encodes the enzyme GLYCOCEREBROZIDASE

	Type 1	Type 2	Type 3
Age of appearance	In any age	In childhood	In childhood
Duration of life	6 - 80	2 years	6 - 80
Primary deffects of CNS	-	++	+ ++++
Hepatospleno- megaly	+ →+++	+++	+ →+++
Hematological abnormalities	+ →+++	++	+ ++++
Skeletal abnormalities	- ++++	-	- →+++

Gaucher disease

Nonmendelian inheritance

- Nonmendelian monogenic characters
- Genetic heterogeneity
- Mitochondrial inheritance
- Polygenic characters

Monogenic characters

Mendelian

Have biallele determinism Follow mendelian patterns Correspond to one of the basic pedigree patterns Have bimodal distribution in population (normal phenotype/pathologic)

Nonmendelian

Have biallele or monoallele determinism Do not follow mendelian patterns Do not correspond to basic pedigree patterns Show variable manifestation in phenotype: nonpenetrance, variable expression

Phenomena which influence the expression of AD genes

- Nonpenetrance
- Variable expression
- Tissue specificity
- Sporadic cases by *de novo* mutations

Variable expression

Phenomena which influence the expression of AR genes

- Single allele expression (genome imprinting, lyonization, allele exclusion)
- Uniparental disomy
- Compound heterozygotes

Genome Imprinting

 Expression of genes is controlled by patterns of methylation that differ according to the parental origin of gene

Uniparental disomy Angelman and Prader-Willi syndromes

Compound heterozygotes

Mechanisms involved in variable expression of pathological genes

- Allele and non-allele interactions
- Allele and locus heterogeneity
- Pleiotropy
- Unstable expanding repeats
- Environmental factors

Genetic heterogeneity

- Heterogeneity is a phenomenon when different mutation produce the similar phenotype
- There are two types:
 - Locus heterogeneity different nonallele gene mutations produce the similar phenotype
 - Allelic heterogeneity different allelic mutation in the same locus produce the similar (but not identical) phenotype

Allelic heterogeneity

Numerous mutations in gene which encode Clchannel produce the cystic fibrosis

123456a6b	7 8 9 10 11	2 13 14a	lb 15 1617a 17b	18 19 20 21	22 23 24
Missense					
AA deletion		_			
Nonsense					
Frameshift					
Splice site					
Amino acid variation					
Total					

Allelic heterogeneity (cystic fibrosis=mucoviscidosis)

Allelic heterogeneity

Locus heterogeneity

35 different A-D, R-D, X-R mutant genesare manifested as *Retinita pigmentosum*

Pleiotropy

-one gene determine many different traits

Marfan Syndrome

Unstable expending repeats

Key

				= Myotonic dystrophy	
	CTG repeats	Appearance	Pathological traits	d. = death	
Paul	350	After 30 years	Myotony; muscle weakness	Paul (57 yrs)	ĥ
Rose	520	After 20 years	Myotony; muscle weakness	350 repeats	11 2
Dylan	>3000	prenatal	Sever muscle weakness; pulmonary insufficiency	Rose (23 yrs) 520 repeats Dylan (d. 2 wks)	
				>3000 repeats 🖊	

Some diseases caused by unstable expanding repeats

Disease	Location of gene	Repeat sequence	Stable repeat no.	Unstable repeat no.
Fragile-X- svndrome	Xq27.3	CGG/CCG	5-50	>200
Myotonic dystrophy	19q13.3	CTG/CAG	5-35	50-4000
Huntington disease	4p16.3	CAG/CTG	6-35	>42
Freidreich ataxia	9p13	CAG/CTG	7-22	200-1700

Fragile-X-syndrome

Mitochondrial inheritance

- Matrilineal inheritance, giving a recognizable pedigree pattern
- Disease is caused by mutation in mtDNA⇒ energy metabolism defects
- Mutations usually produce nervous and muscle systems diseases, but can affect any other organ
- Mitochondrial diseases have a early appearance, progressive evolution and variable expression

Mitochondrial diseases

- CPEO chronic progressive external ophthalmoplegy
- Ocular myopathy
- Hereditary cardiomyopathy
- MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes)
- Leber's hereditary optic atrophy
- MERFF (myoclonic epilepsy with ragged-red-fibers)

Mitochondrial disease

MELAS Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes

Multifactorial inheritance

Characters depend on many genetic loci, with greater or smaller contributions from environmental factors

The genetic determination may involve a small number of loci (oligogenic) or many loci each of individually small effect (polygenic)

Most human normal traits, such as height, weight, eye and skin color, intelligence and metabolic rate are governed by the cumulative effects of many genes

Pedigree pattern of multifactorial transmission

Polygenic diseases

- Are determined by many genes;
- Have familial aggregation;
- Have bimodal or multimodal distribution;
- Recurrence risk depends on severity of disease, grade of relationship with sick person, number of affected relatives, coefficient of heredity,
- Ex.:common diseases; isolated congenital diseases; cancer; some forms of mental retardation.